TUN/TAP虚拟网络设备为用户空间程序提供了网络数据包的发送和接收能力。他既可以当做点对点设备(TUN),也可以当做以太网设备(TAP)。实际上,不仅Linux支持TUN/TAP虚拟网络设备,其他UNIX也是支持的,他们之间只有少许差别。

原理简介
TUN/TAP 虚拟网络设备的原理比较简单,他在Linux内核中添加了一个TUN/TAP虚拟网络设备的驱动程序和一个与之相关连的字符设备 /dev/net/tun,字符设备tun作为用户空间和内核空间交换数据的接口。当内核将数据包发送到虚拟网络设备时,数据包被保存在设备相关的一个队 列中,直到用户空间程序通过打开的字符设备tun的描述符读取时,它才会被拷贝到用户空间的缓冲区中,其效果就相当于,数据包直接发送到了用户空间。通过 系统调用write发送数据包时其原理与此类似。
值得注意的是:一次read系统调用,有且只有一个数据包被传送到用户空间,并且当用户空间的缓冲区比较小时,数据包将被截断,剩余部分将永久地消失,write系统调用与read类似,每次只发送一个数据包。所以在编写此类程序的时候,请用足够大的缓冲区,直接调用系统调用read/write,避免采用C语言的带缓存的IO函数。
准备工作
首先你需要一个能工作的Linux操作系统,并且内核支持TUN/TAP虚拟网络设备,如果没有,请在内核中选中:
Device Drivers => Network device support => Universal TUN/TAP device driver support 
你可以选择编译进内核或者是编译成模块,然后重新编译内核并用新内核启动。如果你编译的是模块,那么在下步开始之前,你需要手工加载它。
root@gentux ~ # modprobe tun 
开始编程
从代码开始:
 
  1.  #include <linux/if_tun.h> 
  2.  int tun_create(char *dev, int flags)  
  3.     struct ifreq ifr; 
  4.     int fd, err; 
  5.  
  6.     assert(dev != NULL); 
  7.      if ((fd = open("/dev/net/tun", O_RDWR)) < 0) 
  8.          return fd; 
  9.      memset(&ifr, 0, sizeof(ifr)); 
  10.      ifr.ifr_flags |= flags; 
  11.      if (*dev != '\0'
  12.          strncpy(ifr.ifr_name, dev, IFNAMSIZ); 
  13.      if ((err = ioctl(fd, TUNSETIFF, (void *)&ifr)) < 0) { 
  14.          close(fd); 
  15.          return err; 
  16.     } 
  17.      strcpy(dev, ifr.ifr_name); 
  18.  
  19.      return fd; 
  20.  } 
为了使用TUN/TAP设备,我们必须包含特定的头 文件linux/if_tun.h,如12行所示。在21行,我们打开了字符设备/dev/net/tun。接下来我们需要为ioctl的 TUNSETIFF命令初始化一个结构体ifr,一般的时候我们只需要关心其中的两个成员ifr_name, ifr_flags。ifr_name定义了要创建或者是打开的虚拟网络设备的名字,如果它为空或者是此网络设备不存在,内核将新建一个虚拟网络设备,并 返回新建的虚拟网络设备的名字,同时文件描述符fd也将和此网络设备建立起关联。如果并没有指定网络设备的名字,内核将根据其类型自动选择tunXX和 tapXX作为其名字。ifr_flags用来描述网络设备的一些属性,比如说是点对点设备还是以太网设备。详细的选项解释如下:
  • IFF_TUN: 创建一个点对点设备
  • IFF_TAP: 创建一个以太网设备
  • IFF_NO_PI: 不包含包信息,默认的每个数据包当传到用户空间时,都将包含一个附加的包头来保存包信息
  • IFF_ONE_QUEUE: 采用单一队列模式,即当数据包队列满的时候,由虚拟网络设备自已丢弃以后的数据包直到数据包队列再有空闲。
配置的时候,IFF_TUN和IFF_TAP必须择一,其他选项则可任意组合。其中IFF_NO_PI没有开启时所附加的包信息头如下:

struct tun_pi {

    unsigned short flags;
    unsigned short proto;
};

目前,flags只在收取数据包的时候有效,当它的TUN_PKT_STRIP标志被置时,表示当前的用户空间缓冲区太小,以致数据包被截断。proto成员表示发送/接收的数据包的协议。
上面代码中的文件描述符fd除了支持TUN_SETIFF和其他的常规ioctl命令外,还支持以下命令:
  • TUNSETNOCSUM: 不做校验和校验。参数为int型的bool值。
  • TUNSETPERSIST: 把对应网络设备设置成持续模式,默认的虚拟网络设备,当其相关的文件符被关闭时,也将会伴随着与之相关的路由等信息同时消失。如果设置成持续模式,那么它将会被保留供以后使用。参数为int型的bool值。
  • TUNSETOWNER: 设置网络设备的属主。参数类型为uid_t。
  • TUNSETLINK: 设置网络设备的链路类型,此命令只有在虚拟网络设备关闭的情况下有效。参数为int型。
一个小实例:

 
  1. int main(int argc, char *argv[]) 
  2.         int tun, ret; 
  3.         char tun_name[IFNAMSIZ]; 
  4.         unsigned char buf[4096]; 
  5.  
  6.          tun_name[0] = '\0'; 
  7.          tun = tun_create(tun_name, IFF_TUN | IFF_NO_PI); 
  8.         if (tun < 0) { 
  9.                 perror("tun_create"); 
  10.                 return 1; 
  11.         } 
  12.         printf("TUN name is %s\n", tun_name); 
  13.  
  14.         while (1) { 
  15.                 unsigned char ip[4]; 
  16.  
  17.                  ret = read(tun, buf, sizeof(buf)); 
  18.                 if (ret < 0) 
  19.                         break; 
  20.                 memcpy(ip, &buf[12], 4); 
  21.                 memcpy(&buf[12], &buf[16], 4); 
  22.                 memcpy(&buf[16], ip, 4); 
  23.                  buf[20] = 0; 
  24.                 *((unsigned short*)&buf[22]) += 8; 
  25.                 printf("read %d bytes\n", ret); 
  26.                  ret = write(tun, buf, ret); 
  27.                 printf("write %d bytes\n", ret); 
  28.         } 
  29.  
  30.         return 0; 

以上代码简答地处理了ICMP的ECHO包,并回应以ECHO REPLY。
首先运行这个程序:
root@gentux test # ./a.out
TUN name is tun0 
接着在另外一个终端运行如下命令:
root@gentux linux-2.6.15-gentoo # ifconfig tun0 0.0.0.0 up
root@gentux linux-2.6.15-gentoo # route add 10.10.10.1 dev tun0
root@gentux linux-2.6.15-gentoo # ping 10.10.10.1
PING 10.10.10.1 (10.10.10.1) 56(84) bytes of data.
64 bytes from 10.10.10.1: icmp_seq=1 ttl=64 time=1.09 ms
64 bytes from 10.10.10.1: icmp_seq=2 ttl=64 time=5.18 ms
64 bytes from 10.10.10.1: icmp_seq=3 ttl=64 time=3.37 ms
--- 10.10.10.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2011ms
rtt min/avg/max/mdev = 1.097/3.218/5.181/1.671 ms 
可见,我们顺利地接受到了回应包,这时,切回到前一个终端下:
read 84 bytes
write 84 bytes
read 84 bytes
write 84 bytes
read 84 bytes
write 84 bytes 
一切正如我们所预想的那样。
TUN/TAP能做什么?
hoho,问这个问题似乎有些傻,你说一个网卡能做什么?我可以告诉你两个基于此的开源项目:,至于其他的应用,请自由发挥你的想像力吧!

 

原文链接: